This question was previously asked in

DFCCIL Executive S&T 2018 Official Paper

Option 4 : 0

CT 1: Current Affairs (Government Policies and Schemes)

54993

10 Questions
10 Marks
10 Mins

__Concept:__

Unit impulse function:

It is defined as, \(\delta \left( t \right) = \left\{ {\begin{array}{*{20}{c}} {\infty ,\;\;t = 0}\\ {0,\;\;t \ne 0} \end{array}} \right.\)

The discrete-time version of the unit impulse is defined by

\(\delta \left[ n \right] = \left\{ {\begin{array}{*{20}{c}} {1,\;\;n = 0}\\ {0,\;\;n \ne 0} \end{array}} \right.\)

Properties:

1. \(\mathop \smallint \limits_{ - \infty }^\infty \delta \left( t \right)dt = 1\)

2. \(\delta \left( {at} \right) = \frac{1}{{\left| a \right|}}\delta \left( t \right)\)

3. **x(t) δ(t – t0) = x(t0)**

4. \(\mathop \smallint \limits_{ - \infty }^\infty x\left( t \right)\delta \left( {t - {t_o}} \right)dt = x\left( {{t_0}} \right)\)

5. \(\mathop \smallint \limits_{ - \infty }^\infty f\left( t \right)\delta \left( {at + b} \right)dt = \mathop \smallint \limits_{ - \infty }^\infty f\left( t \right)\frac{1}{{\left| a \right|}}\delta \left( {t + \frac{b}{a}} \right)dt\)

6. \(\mathop \smallint \limits_{ - \infty }^\infty x\left( t \right){\delta ^n}\left( {t - {t_o}} \right)dt = {\left. {\frac{{{d^n}x}}{{d{t^n}}}} \right|_{t = {t_0}}}\)

**Calculation:**

\(Let \ y \ =\mathop \smallint \nolimits_{ - 7}^2 \left( {{t^2} + {t^3} + 1} \right)\delta \left( {t - 3} \right)dt\)

Using property (3) in the above equation:

As t = 3, **lies outside the limit**

so y = 0 or we can say that

\(\mathop \smallint \nolimits_{ - 7}^2 \left( {{t^2} + {t^3} + 1} \right)\delta \left( {t - 3} \right)dt =0\)

Hence **option (4) is the correct answer.**